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CATALYTIC DECHLORINATION OF HD 
WITH A QUATERNARY AMMONIUM PHASE-TRANSFER CATALYST 

1. INTRODUCTION 

For purposes of HD decontamination, hydrolysis is an advantageous reaction, 
since the primary product, thiodiglycol, is approximately 5,000 times less toxic than HD, 
on an LD50 basis1"2. However, HD is essentially insoluble in water, which causes the 
hydrolysis reaction rate to be exceedingly low in the absence of agitation or heat3. 

Dr. Charles Starks coined the term "Phase Transfer Catalysis" in 1987 to 
describe the rate enhancement of some reactions in the presence of compounds like 
quaternary ammonium salts4. In 1996, there were several commercial processes that 
used approximately on million lbs per year each of phase-transfer catalysts (PTC)5. 
However, the catalytic activity of quaternary ammonium salts was first patented in 1912' 
and apparently first used commercially in 1946 to produce butyl benzyl phthalate from 
sodium monobutyl phthalate and benzyl chloride7. 

Many theories have been proposed to explain PTC action, but they briefly can be 
described by two mechanisms, i.e., the extraction and interfacial mechanisms. These 
terms loosely refer to whether the rate-determining step of the reaction occurs in the 
organic phase with transferred reagent, or whether it occurs at the interface. In 
practice, both mechanisms probably operate with varying rates for most reactions8. 
Since the HD hydrolysis rate is proportional to stirring speed throughout at least part of 
the reaction regime, its phase-transfer catalysis would presumably be explained at least 
in part by the interfacial mechanism. 

2. MATERIALS AND METHODS 

HD was Chemical Agent Standard Analytical Reference Material and was greater 
than 97% pure. HD was diluted to 10 vol % in dry methanol prior to use. HD chloride 
release was measured with a chloride-specific electrode calibrated against known 
standards. Reactions were conducted in 2.5 ml volumes in temperature-controlled 
vessels with controlled agitation rates provided by a magnetic stir bar. 

Dodecyldimethyl(3-sulfopropyl)ammonium hydroxide was purchased from Aldrich 
and was 99% pure. 

3. RESULTS 

Potential catalysts were typically screened by monitoring the complete chloride 
release from 6.25 mg HD in 2.5 ml of 50 mM bis-tris-propane buffer, pH 7.2 at 25-35° C 
with moderate and controlled electronic stir bar agitation. The reaction was essentially 
complete in 25-30 minutes (primarily depending on temperature) and the reaction profile 



was plotted on a percentage basis to correct for electrode interferences caused by 
some of the catalysts. Rates in buffer alone were compared to those in the presence of 
0.5-2 mg/ml of the catalyst. Most materials produced little or no difference in reaction 
profile. A notable exception was dodecyldimethyl(3-sulfopropyl)ammonium hydroxide 
(DDSAH) (Figure 1). DDSAH is a zwitterionic species and is a powder at room 
temperature. 

CH3 

CH3(CH2)iiN
+(CH2)3S03" 

CH3 

Figure 1. Dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (FW 335.5). 

Figure 2 shows the dechlorination profile 2.5 mg/ml HD, alone and in the 
presence of 0.5 mg/ml DDSAH, at 25° C and pH 7.2. The initial rate is clearly greater in 
the presence of a relatively small amount of the quaternary ammonium compound. 
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Figure 2. Reaction profile of DDSAH and control. 

Since it is evident from Figure 2 that the presence of DDSAH was increasing the 
reaction rate, effects of DDSAH concentration, HD concentration, temperature and pH 
were investigated. Figure 3 shows the effects of DDSAH concentration over a 1,000- 
fold range (0.01 to 10 mg/ml). For all values, the background dechlorination rate in the 



absence of catalyst was subtracted from that observed in the presence of catalyst. 
Optimal rates were generally achieved in the range of 0.5 to 5 mg/ml. 

DDSAH (mg/ml) 

Figure 3. Effects of DDSAH concentration on the HD dechlorination rate. 

The effects of HD concentration were also investigated over a 10-fold range (0.5 
to 5 mg/ml). The optimal concentration was near 2 mg/ml (Figure 4). 
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Figure 4. Effects of HD concentration on the rate of DDSAH-catalyzed HD 
dechlorination. 

The effects of pH were investigated between 6 and 8.5 (Figure 5). Below pH 6.0, 
bis-tris propane offered little buffering capacity; above pH 9.0 the background hydrolysis 
rate was too high to permit reproducible rate determinations. In general, little effect of 
pH was observed over the range tested. 
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Figure 5. Effect of pH on the rate of DDSAH-catalyzed HD dechlorination. 

The effects of temperature were investigated over a range of 20° C to 50° C 
(Figure 6). HD freezes at 15° C and hydrolyzes too rapidly above 50° C, so this was the 
approximate range within which reproducible rates could be measured. Between 20° 
and 35°, little change was observed. At higher temperatures of 40-50°, the catalyst 
effect was almost twice that observed at the lower temperatures. 
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Figure 6. Effect of temperature on the rate of DDSAH-catalyzed HD dechlorination. 

By definition, catalysis involves the enhancement of reaction rate by the addition of a 
relatively small amount of a non-reactant material. One powerful line of evidence for 
catalysis is based on stoichiometry; if the observed effects cannot be accounted for on a 
stoichiometric basis, then catalysis is a logical explanation. In order to study this effect, 
a reaction was set up using 2.5 mg/ml HD and 0.5 mg/ml DDSAH (16 mM HD and 1.5 
mM DDSAH). With these concentrations of materials, at pH 7.2 and 25° C, a 75% rate 
enhancement was observed (Table 1). The entire reaction profile is shown in Figure 2 
above. The observation of a 75% dechlorination rate increase from the addition 1.5 mM 
DDSAH to a 16 mM HD reaction is consistent with a catalytic effect of the DDSAH on 
this reaction. 
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Table 1. Evidence for DDSAH catalysis. 
Reaction [HD] Effective 

HD 
Molarity 

[DDSAH] DDSAH 
Molarity 

Rate (ppm 
Cl- min"1) 

% Rate Increase 

HD Alone 2.5 
mg/ml 

16 mM none none 35.4 N/A 

HD + 2.5 16 mM 0.50 1.5 mM 61.9 75% 
DDSAH mg/ml mg/ml 

One explanation of the DDSAH-catalyzed dechlorination of HD could be via a 
mechanism similar to that postulated for the cyanide displacement reaction9. It should 
be noted though, that other PTC-catalyzed reactions have been shown to 
simultaneously proceed via more than one mechanism. 

CICH,CH,SCHoCH2-CI   +   Q+OH" CICH,CH,SCH,CH,-OH   +   Q+CI" i2oi i2ov^i I2WI >2 

HOCH2CH2SCH2CH2-CI   +   Q+OH' 

Organic Phase 

Aqueous Phase 

Q+OH- 

OH- 

HOCH2CH2SCH2CH2-OH   +   Q+CI" 

Organic Phase 

J Aqueous Phase 

HOCH2CH2SCH2CH2OH 

Figure 7. Concept diagram of DDSAH catalysis of HD dechlorination. Adapted from 
Starks9. Hydroxide ion from the aqueous phase is transferred via the quaternary 
ammonium compound (Q+) through the aqueous/organic interface. In the organic 
phase, chloride groups are successively removed from HD. The resulting Cl" is 
transferred through the interface as Q+CI". The final product, thiodiglycol 
(HOCH2CH2SCH2CH2OH), dissolves in the aqueous phase, eventually eliminating the 
organic phase altogether. 
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4. CONCLUSIONS 

DDSAH was observed to accelerate HD dechlorination over a relatively wide 
range of reactant and catalyst concentrations, temperature and pH. Evidence for 
catalysis was provided by the demonstration of a 75% dechlorination rate increase from 
the addition of 0.5 mg/ml (1.5 mM) DDSAH to a reaction of 2.5 mg/ml (16 mM) HD. 
While HD is known to hydrolyze under these conditions, yielding primarily thiodiglycol as 
the product, it is not yet certain that this is the case for the DDSAH-catalyzed reaction, 
although that would be consistent with these data. Since only the dechlorination rate 
was measured for these experiments, it is possible though, that DDSAH produces an 
elimination reaction, in addition to or instead of the hydrolysis reaction. Definitive 
reaction evidence awaits product analysis. However, it is clear from these data that the 
rate of HD dechlorination is accelerated by the addition of a relatively small amount of 
DDSAH under a variety of conditions. 
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